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Finite topological spaces are combinatorial structures that can serve as replace- 
ments for, or approximations to, bounded regions within continuous spaces such 
as manifolds. In this spirit, the present paper studies the approximation of general 
topological spaces by finite ones, or really by "finitary" ones in case the original 
space is unbounded. It describes how to associate a finitary space F with any 
locally finite covering of a Tl-space S; and it shows how F converges to S as 
the sets of the covering become finer and more numerous. It also explains the 
equivalent description of finite topological spaces in order-theoretic language, 
and presents in this connection some examples of posets F derived from simple 
spaces S. The finitary spaces considered here should not be confused with the 
so-called causal sets, but there may be a relation between the two notions in 
certain situations. 

1. I N T R O D U C T I O N  

That  mat ter  on  the smallest  scales sheds its con t inuous  na ture  is 
indica ted  by several features of  present -day physics. In  part icular ,  the 
shor t -dis tance "cutoffs" required  (apparent ly)  by both  q u a n t u m  field theory 
(to " regular ize"  the func t iona l  integral)  and  " q u a n t u m  gravity" (to render  
b lack  hole ent ropy finite) seem ul t imately foreign to the no t ion  of  differenti- 
able man i fo ld  embodied  in classical general  relativity. Their  s tubborn  pres- 
ence suggests, rather, that  there is a discrete subs t ra tum under ly ing  space- 
t ime and  accoun t ing  na tura l ly  for the appearance  of a m i n i m u m  length in 
the effective theories we now possess. Such an under ly ing  discreteness,  
moreover,  has often been  looked to in the hope of f inding explanat ions  for 
such general  features of  na ture  as the existence of  the spacetime metric, 
the presence of gauge and  other fields in teract ing with this metric, the 
(3 + 1)-d imensional i ty  of spacetime,  the direct ional i ty  of time, and  the near  
van ish ing  of the cosmological  constant .  
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Even if spacetime should prove to be a true continuum after all, 
latticelike approximations to it would no doubt continue to be useful as 
technical tools. Such approximations have already been employed "calcula- 
tionally" to study theories such as QCD (Duke and Owens, 1985), but they 
also offer hope of shedding light on presently obscure conceptual issues of 
quantum gravity. In part icular , the results to be presented below furnish a 
framework in which one might express the difficult to formulate idea that 
the topology of spacetime (or space) may be highly ramified and ceaselessly 
fluctuating on small scales ("foamlike"),  and yet "smooth out" on large 
scales to produce a topologically featureless continuum such as  R 4. 

Leaving such nonfundamental  applications aside for now, let us assume 
that a discrete substratum really exists and ask how we might expect it to 
be organized. One possibility, of course, is that it has an entirely unexpected 
structure unrelated to anything we know in the continuum. In that case, 
though, it would be hard to foresee how the substratum serves to underpin 
the continuum at all. A more fruitful assumption at this stage might be that 
some basic aspect of the substratum's organization is already familiar to us 
from our study of the cont inuum--that  the continuum resembles the sub- 
stratum in a definite manner which can help us to mediate between descrip- 
tions at the deeper level and descriptions at the more coarse-grained level 
on which Riemannian (or rather Lorentzian) geometry emerges. 

In trying to carry this assumption farther, the first decision we face is 
which structure or structures of Lorentzian geometry to hang onto as we 
descend to the level of the substratum. Should it be the topology, the metric 
structure, the SL(2, C) spin-structure, the causal structure, or something 
else? All of  these possibilities have been proposed, but let me concentrate 
here on topology. If  we assume a topological resemblance between con- 
tinuum and discrete substratum that is as close as possible, then the latter 
will literally be a topological space, but one in which any bounded region 
(in an appropriate sense) comprises only a finite number of elements or 
"points".  In other words, the substratum will be what I will call a "finitary 
topological space." 

A recent invocation of such a model in the context of "quantum 
topology" may be found in work by Isham (1989a, b), who shows how 
finitary topologies (and possibly more general ones) may be quantized along 
algebraic lines. Basing himself on the lattice of all topologies ~" on a given 
set $, and treating this lattice as a kind of configuration space within which 
r can vary, he defines an abstract *-algebra A generated by plausible 
analogues of position and momentum variables for ~'. He then observes that 
the permutations of S function as gauge transformations of the theory, and 
shows how to pass to a subalgebra of A which is gauge invariant in this 
sense. Finally, he studies a specific Hamiltonian which is capable of inducing 
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transitions from one topology ~- to another! Physically, such a model might 
have more than one application, but in relation to quantum gravity it would 
seem to fit most directly into a "canonical" approach in which the topologi- 
cal substratum underpins, not spacetime itself, but only "space at a fixed 
t ime" (with whatever meaning this last phrase would ultimately acquire). 

Another possibility is that the substratum corresponds to spacetime as 
a whole, with its dynamics being introduced via a sum-over-histories or 
some other "covariant" procedure. A theory of  this general type was pro- 
posed by Finkelstein and Rodriguez (1986; Finkelstein, 1987), who, 
however, chose the simplicial complex rather than the finitary topological 
space per se as their fundamental mathematical structure. Like Isham, they 
favor an algebraic approach to "quantization"; but rather than construe 
the basic topological variables as elements of  an ordinary *-algebra, they 
seek them within an alternatively structured algebra intended to provide a 
language for an entire quantum set theory from which the special case of  
the quantum simplicial complex would follow automatically. In this way 
they attempt to build quantum mechanics in from the outset, and also to 
endow finitary topological notions with an algebraic content which would 
allow an SL(2, C) corresponding to physical spin to emerge directly out 
of the substratum. This attempt to fuse topology with spin produces a 
framework within which the relation between the macroscopic topology 
and that of  the underlying simplicial complex appears to be much less direct 
than is the relation between large- and small-scale topology in a model of 
the Isham type. It is thus unlikely that the considerations of Section 4 below 
would apply to the theory of  Finkelstein and Rodriguez (1986; Finkelstein, 
1987) as readily as they might to that of Isham (1989a, b). 

Another way in which finitary topology might become relevant to the 
discrete substratum would be if the latter possessed a structure which, while 
not in itself topological, was nevertheless close enough in mathematical 
character that one could derive a finitary topological space from it by some 
auxiliary construction, for example, via some sort of  coarse-graining. In 
this connection it is noteworthy that every finitary topological space has an 
equivalent description as a partially ordered set (poset), as we will see 
below. For this reason, constructions leading to finitary topological spaces 
might be useful in theories which attribute a partial ordering to the sub- 
stratum, even if that ordering is not topological in character. 

Thus, frameworks in which the substratum carries a microscopic causal 
order (causal in the sense that it corresponds to the macroscopic relation 
of before and after) are ones in which finite topological spaces might turn 
out to be useful, even if they do not come into consideration at the most 
fundamental level of theory. Among such ideas is the "causal set" hypothesis 
of  Bombelli et al. (1987) and Sorkin (1990), which embodies the approach 
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to quantum gravity that I personally favor. A related proposal is put forth 
in Finkelstein (1988, 1989a, b), wherein, however, the fundamental order 
has a strong topological flavor mixed in with its causal one. (Or perhaps a 
better interpretation might be that the order is neither topological nor causal, 
but rather one of abstract succession, while the physical topology and metric 
arise indirectly via an algebraic construction of  spacetime in terms of tensors 
whose index structure mirrors the abstract order.) In contrast, a causal set 
in the sense of  Bombelli et  al. (1987) and Sorkin (1990) carries no topological 
structure at all, except insofar as one emerges at the same level of being 
on which the continuum itself begins to exist. 

In this third sort of situation (to which I will return briefly in the 
concluding section) two distinctly different posets would be involved. The 
first would be nontopological and fundamental, expressing the most basic 
organization of the substratum; the second would be topological but deriva- 
tive, arising from the f rs t  by some formal procedure intended to bring out 
the topological information implied by the latter's more fundamental order. 
This kind of application of finitary topological spaces would be in a sense 
intermediate between the two kinds of application discussed above: ones 
in which the topological poset is itself fundamental,  and ones in which it 
is introduced entirely by hand in order to facilitate the study of what is 
ultimately a continuum theory from start to finish. 

In the present paper I will not try to gear the mathematical development 
to any one or another of the potential applications broached above. Rather, 
I will study a question which would likely be important for any one of 
them: the question of the manner in which a flnitary topological space (or 
sequence of them) can approximate (or in the limit reproduce exactly) a 
more general topological space such as a manifold. The possibility of such 
an approximation would seem to be required whether the finitary topological 
structure is intended as fundamental in itself, as a help in mediating between 
the substratum and the continuum, or merely as a technical aid in analyzing 
a true continuum theory. 

The material to be presented below [much of which was announced 
in Sorkin (1983)] begins with a brief introduction to finite topological spaces, 
showing their relation to posets and to coverings of continuum spaces; it 
ends with the proof  of a theorem on approximating an arbitrary Tl-space 
by finitary spaces. In more detail: Section 2 explains how to associate a 
finite topological space with a covering of  a given space by a finite number 
of open sets; Section 3 introduces the equivalent description of a finitary 
topological space as an ordered set (poset) and presents some examples 
illustrating how such topological notions as connectedness, continuity, and 
homology become reformulated in order-theoretic terms; and Section 4 
proves some theorems showing in what sense the finitary topological space 
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derived from a covering converges to the original as the covering sets become 
smaller and more numerous. 

2. THE FINITE T O P O L O G I C A L  SPACE ASSOCIATED WITH A 
FINITE COVERING 

Let S be any topological space, for example, spacetime or a spacelike 
hypersurface thereof. From an "operational" perspective, an individual 
point of S is a very ideal limit of  what we can directly measure. A much 
better correlate of  a single "position-determination" would probably be an 
open subset of S. Moreover, even for continuum physics, the individual 
points (or "events") of S exist only as carriers for the topology, and thereby 
also for higher-level 2 constructs such as the differentiable structure and the 
metric and "matter" fields: not the points per se, but only this kind of 
relation involving them has physical meaning. 

Recall now that mathematically the topology ~ of S is precisely a 
family of  subsets of S (the open subsets). Thus, if for some reason we have 
access to only a finite number of open sets (for example, those "given" by 
our previous measurements), then we have in effect access not to the full 
topology ~, but only to a subtopology ~ c ~. In such a situation the above 
remarks suggest we can codify our topological knowledge of S in the 
structure of  the space F ( ~ )  obtained from S by identifying with each other 
any two of its points which are not distinguished by the sets of ~. 

More formally, let ~ c ~ be a collection of open sets whose union is 
S (i.e., an open cover of S). Assume that ~ is finite (whence S is best 
compared with a bounded region of space or spacetime) and that it is closed 
under the operations of  union and intersection, thus forming a subtopology 
on S. Regard x, y c S as equivalent iff V U c a//, x ~ U <==> y ~ U. Let F(a//) 
be the quotient of S with respect to this equivalence and let f(~ : S--> F(~ 
be the map taking x ~ S into the equivalence class to which it belongs. By 
definition, a subset A c F ( ~ )  will be open iff the union of the equivalence 
classes comprising A is one of the open sets U, i.e., iff 3 f ( ~ ) - l ( A ) ~  ~. 
Equivalently, the open sets in F are those of the form f ( ~ ) [  U] for U ~ ~. 

Consider, for example, the simple situation of Figure 1. Here there 
might have been two imprecise and overlapping "point determinations" 
(the two disks) giving rise to a covering of S = A u B u C by the open sets 
A u C, B u C, and C (as well as the empty set and S itself, which gives 6// 

2in case S is spacetime, this assignment of "levels" is not unambiguous. One can equally 
regard the causal structure as basic, with the topology and differentiable structure being 
derived from it. 

3Notice that this differs in general from another possible definition which would require only 
membership in 5. 
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a r b 
Fig. 1. A covering and its To-quotient. 

a total of five members). The associated finite space F = F(q/)  has three 
points: F = {a, b, c}; and its nontrivial open subsets are {a, c}, {b, c}, {c}. It 
is clear that F(a//) carries precisely as much topological information about 
S as o-//provides.4 

There is a more abstract description of the above procedure which will 
be useful to us in considering how F(~//) converges to S as ~/grows finer. 
A topological space S is a To-space if for any pair of distinct points of  S 
there is an open set containing one point and not the other. (With this 
definition the above remark that points are no more than carriers of topology 
can be phrased by asserting that every physical space is a To-space.) Now, 
if some space X is not To, it can be "made so" by identifying unseparated 
points just as we did above, where we in effect constructed F(e//) as the 
To-quotient of  S with respect to the topology a//. 

This quotient can be defined by the universal mapping property illus- 
trated in Figure 2. One calls f :  X ~ Yuniversal among maps into To-spaces 
iff Y itself is To, and for any other map g of X into a To-space Z, there is 
a unique k such that g = k f  (here "map"  means "continuous function"). 
The statement that f : X ~  Y is universal in this sense defines Y (up to 
homeomorphism) as the To-quotient of X. For completeness, let us check 
that f = f ( 9 / )  as defined above actually solves this "universal mapping 
problem", i.e., that it "makes X = (S, ~/) into a To-space". 

Lemma 2.1. With S, 0// as  above, the projection f ( ~  F(q/ )  is 
universal among ~ maps of S into To-spaces. 

4In this sense it refines the notion of  the "nerve" of a covering (Aleksandrov, 1956). 
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F 

Fig. 2. Diagram defining Y as the To-quotient of X. In the application to finite coverings, 
X=(S, all), Y-  F(a//), and f=f(q/). 

Proof Referring to Figure 2, let X be (S, OR) (i.e., S provided with the 
topology OR) and let f = f ( o R ) ,  Y=F(OR). Also let [x]:=f(x) be the 
equivalence class of x as defined above, i.e., the set of points of  S not 
separated from x by OR. Since f is surjective (obviously), the required k will 
be unique if it exists at all and must be given by k ( [ x ] ) = g ( x ) .  This 
specification of  k will be consistent as long as Ix] = [x'] ~ g(x)= g(x'). 
But if g(x) ~ g(x'), then since Z is To, there is an open set W separating 
g(x) from g(x'). Hence g - l [  W] on one hand belongs to OR (by the definition 
of  g) and on the other hand clearly separates x from x', which therefore 
are inequivalent: [x] r Ix']. Thus, k is well defined and satisfies g = kf by 
construction. Further, k is continuous. For given any open W c Z, we have 
f - l[k-l[  W]] = (kf)- l [  W] - g- l [  W], which is open by the continuity of  g; 
hence k - l [ W ]  is open by the definition of the topology of Y =  F(OR). 
Finally, let us verify that F(OR) = Y is itself To. If  [x] r  then by definition 
there is U ~ OR for which (say) x e U, y ~ U. This implies in turn that Vz ~ U, 
[ z ] r  whence f (y)=[y]~f[U].  Hence f [ U ]  (which is open by 
definition) separates Ix] from [y]. II 

For future use, let us record the just-used fact that, as an immediate 
consequence of  the definition of F(OR) in terms of  equivalence classes, 

f(OR)-lf(OR)[U] = U for any U e  ~ (2.1) 

In replacing S by F(OR), we have in effect approximated one topological 
space by another one of  a very special type: a topological space containing 
only a finite number of  elements. In Section 4 we will see in what sense 
the approximation improves as more and more open sets are added to OR. 
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3. ORDER AND TOPOLOGY (POSETS) 

Let us pause to consider the notion of finite topological space in its 
own right, before taking up the approximation question again in the next 
section. By definition such a space is a finite set F together with a collection 

of  subsets of F (the open sets) closed under union and finite intersection. 
But since F is finite, ~ is actually closed under arbitrary intersections (as 
well as arbitrary unions). Consequently any x ~ F has a smallest neighbor- 
hood, namely the intersection, 

A(x) = c~{A ~ ~ l x  ~ A} (3.1) 

of all the open sets containing it. This association of  subsets of F to elements 
of F allows one to convert the natural ordering on subsets to a relation on 
elements. Denoting this relation by an arrow, we have the definition, 

x --> y r A(x) c A(y) (3.2) 

Since in any case x ~ A(x), this is equivalent to 

x ~ y <=> x ~ A ( y )  (3.3) 

which can also be read as saying that every open set containing y contains 
x as well, i.e., that y ~ {x}, the closure of the set {x}. This last interpretation 
shows that our arrow notation is literal: x--> y iff the constant sequence x 
in fact converges to the point y in the topology ~. 

Now it is immediate from (3.2) that --> is transitive and reflexive: 

x--> x 

x - - > y ~ z ~ x - - > z  

Conversely, given any relation ~ with these properties, one acquires a 
topology on F by setting, for x e F, 

A(x) := {y ~ Fly'-> x} (3.4) 

and defining a subset A c F to be open iff it is a union of sets of the form 
A(x), i.e., iff x -~ y e A ~ x ~ A. It is clear that the correspondences we have 
just set up between topologies ) and relations --> are inverses of  each other. 

So for a finite set F the notion of topology is equivalent to that of  a 
transitive, reflexive relation (sometimes called "preorder ' ) .  When will such 
a relation on F give rise to a topology that makes F a To-space? Well, F 
fails to be To when there are points x # y for which every open set containing 
x contains y and vice versa, thus, when A(x) = A(y), or equivalently when 
a "circular" order relation x --> y --> x occurs. Reexpressing this in a positive 
way, we conclude that (F, ~) is To if and only if the relation --> is a partial 
order. In that case F becomes a partially ordered set or "poset". 
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Because only To-spaces will interest us, I will hencefor th  always assume 
that  ~ is a partial ordering. I will also use the order-theoret ic  language 
in terchangeably  with the topological  language,  than which it is of ten more 
convenient .  In  part icular  the order-dual  o f  (3.4), 

V(x) :={y~  F l x  ~ y} (3.5) 

is just  the closure {x}. Then,  extending the nota t ion A, V to subsets in the 
obvious  way,  we have for  A c F 

A is closed r A = V(A) 

A is open  r A = A(A)  

[Note ,  however,  that  a l though V(A) is the closure o f  A, A(A)  is in general 
not  its interior.] Finally, a map  f :  F I ~  F2 is continuous if[ it is order- 
preserving, i.e., iff x ~ y ~ f ( x )  -~f(y). (Proof:  continui ty just says f preser- 
ves convergence  o f  sequences.)  

Until now we have always been taking F to be a finite set. However ,  
it is clear that  the spacetime of  a spatially infinite universe, or  even o f  a 
closed universe infinite in time, can proper ly  cor respond only to an F with 
an infinite number  o f  elements. As long as such an F was, for example,  
derived f rom a locally finite open  cover o f  the spacetime, its topo logy  would  
still be equivalent  to the partial ordering ~ defined, as above, by (3.1) and 
(3.2). Indeed ,  one can see that  this equivalence obtains for any topological  
space whose  subsets A(x) ,  defined by (3.1), are all open  [see Bourbaki  
(1966) and Stanley (1986) for  this relation between order  and topology] .  
Conversely,  any poset  whatsoever  can be obta ined  in this way  f rom some 
To-topological  space. However ,  not  any poser is reasonable as a finitary 5 
spacetime topology.  Rather,  as suggested by considering the properties o f  
open  coverings,  one can probably  regard as "f ini tary" only those posets F 
for  which the sets A(x)  and V(x) defined by (3.4) and (3.5) are all finite. 6 
Certainly this condi t ion will be fulfilled by any poset  derived f rom the 
covering o f  a mani fo ld  by a locally finite collection o f  b o u n d e d  open  sets. 7 

5I am avoiding the word "discrete" because it already has a technical meaning in the topological 
context. 

6The term "locally finite" would also be appropriate; but it already has been defined, both 
for posets and for topological spaces. Unfortunately, those two definitions disagree with each 
other, and also with what I am here calling finitary. In particular, a poset is called locally 
finite iff V(x)r~ A(y) is finite for all x, y, a usage which is appropriate when the partial 
ordering has a causal, rather than a directly topological interpretation (Bombelli et aL, 1987; 
Sorkin, 1990). 

7A covering of S is locally finite iff every x ~ S has a neighborhood that meets only a finite 
number of the covering sets. By bounded I mean a set whose closure is compact. 
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One of  the features that make finite (or locally finite) topological spaces 
attractive as finitary analogs of spacetime is that, by definition one can 
immediately define homology and homotopy groups for them. Usually, 
when one passes from the continuum to some discrete analog, one loses 
all topological information. In lattice gauge theories, for example, it is 
difficult--if not impossible--to identify instantons or monopoles, because 
the winding numbers in terms of which these objects are defined become 
meaningless on a lattice. In the present case, however, the continuum 
definitions do carry over to the finitary case, and one can ask how w e l l  
the resulting invariants agree with their continuum values. The answer 
(Aleksandrov, 1956) is that the agreement is virtually perfect! To conclude 
this section, let us look at a few examples of finite topological spaces derived 
from coverings, seeing in particular how a nontrivial first homotopy group 
arises for one of them. 

Our first example is the space F(q/ )  of Fig. 1. This space has for 
elements the three equivalence classes x = A \ B , y = B \ A ,  and z = A n B  
related as follows: 

x ~ - z ~ y  

If represented in the manner customary for posets, it looks like 

@ 

2: 

where rising lines represent arrows. We need not consider any homology 
or homotopy groups in this case, since they all vanish. 

The next example, also homotopically trivial, merely generalizes the 
previous example from one to two dimensions. In Figure 3a, three open 
disks cover a portion S of  the plane, and ~ will be the topology for S 

(a) {b) (c) 
Fig. 3. (a) A covering of a portion of the plane. (b) The associated poset. (c) The "Hasse 

diagram" of the poset. 
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generated by the disks. Clearly, F(~ will have seven elements, each being 
one of  the regions into which the disks divide S. In Figure 3b the associated 
poset is indicated by arrows (the dashed arrows being redundant in the 
sense that they are implied by the others); and in Figure 3c the same poset 
is given as a "Hasse diagram", the solid lines corresponding to the solid 
arrows (the "links") of  Figure 3b. 

Our third example derives from the circle S 1 = (R mod 1) with 0//being 
the subtopology generated by the open covering, {A = ( - 2 / 6 ,  2/6), B = 
(1/6, 5/6), C = (1/6, 2/6)}. The associated finite space F = F(~//) has four 
elements, namely x := A\B = [ - 1 / 6 ,  1/6], y := B\A = [2/6, 4/6], u := C, and 
v := ( A n  B)\C = (4/6, 5/6) bearing the order relations of  Figure 4. 

What is the first homotopy group of  this space? Well, by definition 
(and the definition is meaningful for arbitrary topological spaces, not 
excluding finite ones !) ~rl(F) is the set of  homotopy classes of continuous 
maps f :  [0, 1] -~ F such that f (0)  = f (1 )  = x (say). 

At first glance, one might wonder how any nonconstant map of  [0, 1] 
into F can be continuous, and might consequently be tempted to conclude 
that r etc., are all trivial. However, continuity requires only that 
f-~(X) be open for every open X c F. Consider, then, the mapping f given 
for h ~ [0, 1], by 

i if h = 0 or Z = 1 
f ( h ) =  if 0 < h < 1 / 2  

if h = 1/2 

if 1 / 2 < h < 1  

(3.6) 

I claim that f, which intuitively "winds once around the square" in Figure 
4, is continuous. To verify this, let us consider, for example, the open sets 
{u} and {y, u, v}, whose preimages by f are, respectively, f - l ( u )  = (0, 1/2) 
and f - l ( {y ,  U, V}) = (0, 1), both of  which are manifestly open in [0, 1]. In 

v Y u v 
Fig. 4. A poset derived from the circle and its Hasse diagram. 
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the same way one can check t h a t f - l ( x )  is open for the other two (nontrivial) 
open subsets of F, {x, u, v} and {v}. The map f is therefore continuous, and 
may be called a curve in F. [Along these lines one can show that, more 
generally, a curve in any finite topological space F is in effect merely a 
sequence (Xk) of elements of F, such that, for all k, Xk and xk+~ are related 
by the order --> (i.e., Xk--> Xk§ or vice versa).] With somewhat more effort, 
one can see by analyzing continuity of functions from [0, 1] x [0, 1] to F 
that the map f defined by (3.6) is not contractible, and in fact generates 
~h(F), which consequently is Z. Thus, ~rl(F) = 7r1(S~), an instance of the 
"virtually perfect agreement" mentioned above. 

Our fourth example generalizes the one just discussed from S ~ to an 
arbitrary n-sphere S n. It is a poset containing 2(n + 1) elements {X~ka) ] a = 1, 2; 

..(a) . k = 0 , . . . ,  n} related according to: ~.j --- x~ b) , a, b = 1, 2; j < k; as illustrated 
in Figure 5. Diagrammatically, it consists of  n copies of the poset of Figure 
4, stacked on top of one another, for a total of (n + 1) levels. If the reader 
has not seen these spaces before, he or she may enjoy constructing the finite 
open coverings of S n from which they can be derived. 

Our final example is a poset with 13 elements and 24 links which may 
be obtained from a covering of RP 2= $2/Z2 = the projective plane. It is 
depicted in Figure 6; wherein, for clarity, only the links have been shown. 

M 
X 

Fig. 5. A poset derived from the n-sphere. 
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Ca} 

Fig. 6. 

{b) 
(a) The representation, in terms of its links, of  a poset derived from the projective 

plane R P  2. (b) The same poset rendered as a Hasse diagram. 

The other 12 relations may (like the dashed relations in Figure 3 b ) b e  
deduced from the links by transitivity. 

In this case the curve defined by the outer circle in Figure 6a generates 
rr l(F) = r r l (RP 2) = Z2. In a way that can be made precise, the fact that F 
is only doubly connected shows up in the figure as the fact that the 
twice-traversed outer circle can be contracted onto the intermediate loop 
of  eight elements, and from there onto the central point. 

I hope the discussion of this section has illustrated the characteristic 
way that topological issues get reformulated when one deals with finite 
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spaces. Just as analytical geometry introduces an algebraic-arithmetic 
language into topology and the simplicial complex introduces a com- 
binatorial language, one may say that the finite topological space introduces 
an order-theoretic way of speaking about manifolds and other spaces of 
interest to physics. Although such an approach to topology seems barely 
to have been explored so far, there are still several items which would have 
to be included in a more complete introduction to finite topological spaces 
than I am presenting here. Chief among them, probably, is the existence 
of a construction running in the inverse direction to the process (continuous 
space S)--> (finitary space F)  described in Section 2. The construction in 
question [explained in detail in McCord (1966), Stong (1966), and Stanley 
(1986)] produces from F a simplicial complex E(F) ,  sometimes called the 
"order  complex" of F. In each of the examples discussed above E(F(q / ) )  
reproduces the manifold we would expect [for example, E (F)  = R P  2 in the 
last example], but unfortunately this is not true in general, even for 
sufficiently fine covers q/. [A similar problem exists with the "nerve" con- 
struction (Aleksandrov, 1956), which also fails to produce a simplicial 
complex homeomorphic to the original manifold.] 

Finally, I cannot refrain from mentioning two small applications of 
the order-theoretic way of  thinking to topology. The first concerns triangula- 
tion of product spaces, the second is a method to compute Euler characteris- 
tics. For the first, let $1 = E(F1) and $2 = E(F2)  be two simplicial complexes 
derived from posets. It is well known that there is no canonical way to 
express the Cartesian product of two simplicial complexes as a third such 
complex. On the other hand, the product F1 x F2 of two posers is naturally 
again a poset [by defining (xl,  x2) --> (Yl, Y2) <:> x~ --> Yl and x2--> Y2]. Then 
E(FlX/72) furnishes a natural triangulation of S i x  $2, The method for 
computing the Euler characteristic x ( F )  [=X(E(F) ) ]  is slightly too long to 
explain here (Stanley, 1986), but it follows easily from the two identities 
x(A(x))  = 0 for any x e F and x ( A  u B) = x ( A )  + x ( B )  - x ( A  c~ B) for any 
subsets A, B c F. 

4. CONVERGENCE OF F(a//) TO S 

4.1. The Inverse System 3t" 

In Section 2 we found that a finite subtopology ~/ on the topological 
space S (or what is essentially the same thing, a finite open cover of S) 
gives rise to a finite space F(q/ )  which "approximates" S to a certain 
accuracy. In Section 3 we found that F(~//) can be described equivalently 
in terms of  the order relation we denoted by "-->"; and I mentioned that 
the equivalence continues to hold for a wider class of open covers, which 
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I called "finitary". In the present section we will find that as 0g acquires 
more (and finer) open sets, the approximation of S by F(~ becomes exact. 
Namely, we will find that the F(~ form an inverse system, and this system 
converges to S in a certain sense. Without some result of  this sort, it would 
be difficult to entertain either the idea that posets are a more fundamental  
replacement for the continuum, or the idea that they can be useful in a 
technical way as a kind of  "lattice spacetime" used to study, for example,  
the renormalization group properties of  "Regge calculus". 

The type of  space S that we would like to approximate  is probably a 
manifold, or something very close to a manifold. However, the approxima- 
tion theorem we will actually prove is not limited to such a special case. 
Let us begin, then, with an arbitrary topological space S and a collection 
{0//} of  open covers of  S. We will assume that {q/} is directed in the sense 
that for any two of its elements q/l, ~2 there is a third 6//3 such that 
~1,  9/2-c ~(ag3), where 8 ~ ( ~ )  is the topology generated by o// (the unions 
of  finite intersections of  elements of  0//). 

We have already seen how to associate to each ~ ~ { ~ a To topological 
space F(~/ )  and a continuous surjection f ( q / )  of  S onto F ( ~ ) .  For nota- 
tional convenience we can label the elements of  {a//} with an index j, writing 
then fj and Fj, respectively, for f (q/f l  and F(q/fl.  We have then 

s S-~Fj 

Now let us define a partial ordering on our indices expressing the relation 
of inclusion among the ~(q/) :  

Thus, --- expresses the notion of  refinement we are using; and the condition 
that { 0-//} is directed translates to the statement that for every pair of  indices 
i ,j  there exists an index k greater than both of them. 9 

Now we would like to prove that "Fk-~ S as k ~ ~ " ,  but to interpret 
such a statement literally would presuppose the existence of a topology on 
the "space of all topological spaces",  with respect to which the convergence 
Fk-> S could be defined. Unfortunately no such topology exists (to my 
knowledge). Instead we will use a different notion of  limit, which pertains 
not just to a sequence (more exactly a "net")  of  spaces Fk, but to an "inverse 
system" of spaces Fk together with maps fjk : Fk-~ Fj, defined whenever j-< k. 
In order to obtain these maps,  consider Figure 7, in whichj  -< k. As explained 
in Section 2, the universal mapping problem indicated by Figure 7 will 

Sin prev ious  sec t ions  we have  a s s u m e d  tha t  q/ a l r eady  is a sub topo logy :  0//= ~ ( ~ ) .  Here  we 
re lax  this  ha rmles s  a s s u m p t i o n  for grea ter  ease of  app l ica t ion .  

9A sequence ~ 1 -< ~2  -< " " " is, o f  course,  the mos t  i m p o r t a n t  case of  a d i rec ted  set. However ,  

it is not  sufficiently genera l  for cer ta in  cases,  such as the sys tem of  all finite open  covers  of  5:. 
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fk 

ifJ k 

Fig. 7. Defining the map fjk" 

furnish a unique fjk provided only that Fj is To and that fj is continuous 
with respect to ~(q/k)- 

NOW in fact F~ is To by construction, while the desired continuity 
follows from the inclusions f f l ( ~ ( F j ) )  _ ~(0//j) c ~(O//k). [Here ~(Fj) is the 
topology of Fj, the first inclusion is true by construction, and the second 
merely says that j <- k. In words: let V be open in Fj ; then f~-l(V) is open 
with respect to the q/j-topology by the definition of Fj, whence it is also 
open with respect to the finer q/k-topology.] Because solutions of universal 
mapping problems are by definition unique, it follows immediately that 

f,/jk =f,k (4.1) 

for i -- j  --< k. Thus, all the requirements for an inverse system of spaces and 
maps are fulfilled. 

Definition. Yf is the inverse system of To-spaces Fk and continuous 
maps fjk- 

NOW any inverse system of topological spaces F~ and maps fjk has a 
so-called "inverse limit", which is a certain topological space F~o together 
with maps fj~: Fo~-~ Fj, that can be regarded as the limits of the fjk as k -~ ~ .  
After recalling the definition of this limit, we will prove a series of lemmas, 
which taken together will establish that in all cases of interest F~ is essentially 
the space S with which we began. I say "essentially" because--unfortu- 
nately--Fo~ will not be precisely S, but a non-Hausdorff space containing 
the latter as a dense subspace. This discrepancy can be overcome, as we 
will see, either by a slight modification of the notion of inverse limit, or 
else just by realizing that S itself can be recovered from the unmodified Foo 
as the set of closed points thereof. 
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Fj 
Fig. 8. Defining the inverse limit. 

The notion of  inverse limit (Bourbaki, 1968) can be defined most 
compactly as the solution of  yet another universal mapping problem set up 
as follows (see Figure 8). Let X be an arbitrary topological space and let 
{gk:X  ~ Fk} be a system of  maps 1~ coherent in the sense that f~kgk =gj 
whenever j--< k. Then there is a unique map (see footnote 10) goo :X-~ Foo 
such that fkoogo~ = gk, for all k. It turns out that F~ and the maps fkoo can 
be constructed explicitly: An element x e Fo~ is an arbitrary coherent system 
of  elements Xk C Fk [where coherence means, of course, that xj =fjk(Xk) 
whenever fjk is defined (i.e., whenever j-< k)] and then fkoo(X) is taken to 
be merely Xk. With these definitions (4.1) is guaranteed by the coherence 
of  the system x. Finally, Foo is endowed with the weakest topology compatible 
with the continuity of  all the fko~ ; a basis for it is given by the sets fk~(V),  
V open in Fk. 

From this construction it is easy to see that Foo will be To if all of  
the spaces Fk are To. Let us also note, for future reference, that all the 
fjk are surjective, as follows directly from the surjectivity of fj and the 
equality fj =fjkfk. 

4.2. Properties of  the Limit  

Let us return now to the specific inverse system Yt" of  interest to us and 
examine the maps fk : S ~ Fk in light of the universal mapping problem by 
which Foo is defined. Identifying S and fk with X and gk of the universal 
mapping problem, we acquire a unique map foo:S-.* F~o, for which 

~~ that in this paper any map between topological spaces is by convention continuous. 
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fkoo(fo~(s)) =fk(s) .  Let us see how far we can go toward proving that foo is 
a homeomorphism (which would mean that Foo = S). So far we have placed 
no restrictions at all on the space S or the coverings q/ (other than that 
{~/} is a directed System). We will now add conditions as needed, none of 
which will be essentially restrictive when S is, for example, a (Hausdorff) 
manifold. 

Lemma 4.1. fo~(S) is dense in Foo. 

Proof. Let W c Foo be any nonempty open set. We must find x E W 
and s ~ S such that foo(s) = x. Now, by definition of the topology of F~,  W 
is a union of  sets of  the form fk~(Vk) .  Picking one of these sets, choose 
Xk ~ Vk and s ~f-~l(xk) [such an s exists because fk is surjective]; and let 
x =foo(s). Then fk~(X) =fk~foo(S) = Xk, whence x c fLl(Xk)  c f { l ( V k )  c W, 
as required. �9 

Lemma 4.2. f~  is injective if S is To and if the following condition is 
satisfied: For every s ~ S and every neighborhood N of s, there exists an 
index k and an element U of 0~ k such that s e U c N. 

(Notice that this last condition is necessarily satisfied if q/k contains 
"enough small open sets" in any plausible sense.) 

Proof Let Sl and s2 be distinct elements of  S. Since the latter is To, 
there is an open set W containing (say) sl but not s2. By hypothesis there 
exist k and U ~ ~ for which sl E U c W, whence 0// distinguishes s~ from 
s2. Hence, by the definition of  Fk as a T0-quotient, fk(sl) ~fk(S2), whence 
J~oof~($1) ~ fkoofo~(S2), whence foo(sl) Y~foo(S2). �9 

Taken together the first two lemmas tell us that S - - o r  more precisely 
f ~ [ S ] - - i s  embedded in Foo as a dense subset; but what about the other 
points of  Foo ? We will see that for every such "extra"  y ~ F~,  there exists 
some x ~foo[S] to which y is "infinitely close". Thus, the extra points are 
in this sense "superfluous",  and may be eliminated in one of the ways 
mentioned above. 

By saying that y was "infinitely close" to x, I meant that y belongs to 
every neighborhood of x. For brevity let us write this relationship as 
y ~ N ( x ) ,  by defining, for an arbitrary topological space Z and element 
z~  Z, the set N ( z )  as the intersection of all the open sets containing z: 

N ( z )  := r UIz  ~ (J c Z}  

[Notice that N ( z )  = A(z) if Z is finitary.] What we want to prove can thus 
be stated as follows: 

Lemma 4.3. The sets N ( x )  for x 6 f ~ [ S ]  cover Foo if, for all k, the 
elements of  a//k are bounded (have compact  closure). In particular, the 
conclusion holds if S itself is compact.  
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TO simplify the proof  of  this lemma, let us introduce one more definition 
and an auxiliary result. 

Definition. For x E Foo, let x(k) =fklfk~(X).  

In other words, x(k) is the equivalence class in S to which fk~(X) 
corresponds. If, as in the concrete construction of Fk = F(qlk) given in 
Section 2, we actually identify fk~(X) with this equivalence class, then we 
can also write x(k)=fk~(X). 

Lemma 4.4. k->j  and x ~ Foo~x(k) c x(j).  

The lemma, and therefore its proof, is essentially a matter of notation: 

Proof fko~(X) c f~ l  fjk(fk~(X)) = f~ls Therefore, 

x ( k )  --1 --1 --1 --1 --1 =fa  fko~(X) r  f jk fj~(X) = (fjkfk) fjoo(X) = f j  fj~(X) = x(j). �9 

Proof of  Lemma 4.3. Fix an element y of  Foo. We must demonstrate 
that y belongs to N(f~(s))  for some s e $. Consider the family ~ whose 
members are the sets y(j).  I claim ~: has the "finite intersection property",  
meaning that every finite subfamily of ~" has a nonempty intersection. To 
prove this, let B : = y ( a ) c ~ y ( b ) n . . .  n y(c). Since {q/} is directed, there 
exists some index k greater than all the indices a, b , . . . ,  c :k-> a, k_> 
b , . . . ,  k-> c. Then, by Lemma 4.4, y(k) c B, which means that B cannot be 
empty (the case where S itself is empty can obviously be ignored). 

It follows a fortiori that the compact sets y(k) also enjoy the finite 
intersection property, and hence (e.g., Kelley, 1955) that there exists a point 
s ~ S common to all the sets y(k). We will take x =f~(s )  and prove that 
y e N(x) .  

To prove this, it suffices to show that y is contained in any neighborhood 
of  x of  the form -1 �9 f k o o ( W )  be such a fko~(W), W open in Fk, SO let -1 
neighborhood of x. Now on one hand fk~(X) e W,, obviously�9 On the other 
hand, we know s ~ y(k) by construction, whence 

fk~(x) =fko~f~(s) =fk (S) Cfk(y(k)) Cfk(y--(-~ =fgf~klfk~(y) = fk~(Y) 

or fk~(X)~fkoo(y). Therefore (by the definition of  closure) W, being a 
neighborhood of  3 ~ ( x ) ,  must also contain fk~(Y); i.e., fko~(y) C W, or 
y E f [ ~ ( W ) ,  as required. �9 

If we interpret the relation y ~ N(x)  as meaning that y is "infinitely 
close to x" ,  then we have shown that every point in Fo~ either can be 
identified with an element of  $, or is infinitely close to a point which can. 



942 Sorkin 

However,  we lack, as yet, a criterion to distinguish the first case from the 
second, and thereby to fully recover S directly from the inverse system 
of  approximating spaces Fk and maps fjk. The following lemma provides 
such a criterion, showing that ~ contains complete information from which 
S and its topology can be entirely reconstructed. 

Lemma 4.5. I f  S is a T1 space and the conditions of Lemmas 4.2 and 
4.3 are satisfied, then f ~  imbeds S in F~ as the set of  closed points of  Fo~. 

Proof. We wish to prove that x~fo~[S] if and only if x is closed: 
= {x}. First, suppose x is closed. We know from Lemma 4.3 that x ~ N(y )  

for some y ~foo[S]. But x ~ N(y )  is equivalent to y ~ {x} = {x}, which means 
x = y. Thus, x ~foo[S] since y e f t [ S ] .  

Conversely, let x =foo(s), and let y r x be any other element of  F~.  
We must show y ~ {x}. Now either y ~ N(x )  or not. I f  it is, then x ~ N(y) ,  
since otherwise Fo~ would not be To, contrary to what we saw in Section 
4.1. But x~ N(y )  ~ y~{x}.  

I f  y ~ N(x ) ,  then, by Lemma 4.3 there exist z # x and t E S such that 
z=fo~(t) and y e N ( z ) .  Now z ~ x  ~ t # s ,  whence, since S is T1, there 
exists 11 an open set U in S containing t, but not s. By replacing U with a 
smaller set if need be, we can suppose (by the condition of Lemma 4.2) 
that U e  ~ for some index k. Then let W=fk~fk[U] ,  which is open 
because fk[ U] is open and fko~ continuous. On one hand, t ~ U implies that 

--1 --1 C2 -1 z=foo(t) c f  k~fk~foo(t)=foo fk(t) f k~fk[U] = W, whence z~  W. On the 
other hand, we can prove that x ~ W" 

x ~ W =fk•fk[  U] r fk~(X) ~fk[ U] 4:# fkoof~(s) ~fk[ U] 

r A ( s )  ~f~[ u]  r  s ~ u 

(by the definition of fk), whence x ~ W because s ~ U. Then z ~ W ~ y c 
N(z )  c W, which together with x ~ W, implies y ~ {x}. �9 

Remark. The condition that S be 7"1 is certainly obeyed if S is a (not 
necessarily Hausdorff) manifold. From the lemmas follows immediately: 

Theorem 1. Let S be T1, let {~/} fulfill the "fineness" condition of 
Lemma 4.2, and let each cover ~ consist entirely of sets U with compact  
closure. Then f , :  S ~ F~ densely embeds S in F~ as the subspace of closed 
points. 

t~A space  is T t iff its po in t s  are c losed,  equ iva len t ly  iff for any  two dis t inct  points ,  the first 
has  a n e i g h b o r h o o d  exc lud ing  the second.  



A Finitary Substitute for Continuous Topology 943 

Given this result, we could perhaps tinker with the definition of  inverse 
limit so that it would directly produce S rather than yielding extraneous 
points which then have to be excluded by fiat. In this connection it may be 
relevant--and it is in any case interesting--that there exists another charac- 

A 

terization of F~ :=f~[S],  one expressed purely in order-theoretic language. 
In fact, the coherent systems {xk} from which one may construct F~ also 
define an inverse limit in the category of posets, if ordered according to 

x < y  r Vk, Xk<Yk 

where the order relation on the Fk has been renamed from " ~ "  to " < " .  
With this definition we can alternately characterize F~ as the set of maximal 
elements of Foo, with respect to the order <. 

Let me also state without proof  a strengthened version of  Lemma 4.3 
that applies when S is Hausdorff. 

Lemma 4.6. If  S is Hausdorff and fulfills the conditions of Lemmas 
4.2 and 4.3, then the sets N(f~(s))  partition F~. 

Using this, one can prove that Foo is homotopic to S [in fact S is a 
(strong) deformation retract of F~]. This is not needed for reconstructing 
S (as we have seen), but it might be useful in relating the algebraic-topology 
invariants of  S (its homology groups, etc.) to those of the Fk. 

Finally, we will prove a result which would seem to be needed in order 
that one can speak in a physical sense of the convergence of 9{ to S. This 
result says roughly that the elements of the Fk correspond to sets in S that 
become small as k ~ ~ .  It is all the more interesting because the analogous 
assertion does not hold for inverse systems of simplicial complexes and 
simplicial maps. 

A theorem like the one we will prove could be formulated for any 
inverse system of topological spaces, but for simplicity we will continue to 
limit ourselves to systems 9{ that arise from systems of coverings of a given 
space S. In fact, we will eliminate as many inessential complications as 
possible by assuming that S is compact-Hausdorff, and will also assume 
from the outset that {0//} obeys the condition of  Lemma 4.2 and contains 
only finite covers q/. 

Now let us think of S as some physical continuum, and let us regard 
the elements of a given Fj as approximations to the points of  S, or, more 
appropriately (since it can be obtained from 9{ without direct reference to 
the system of coverings ~ ) ,  of/3o~ := f~[S].  Let us define further ~.oo := fJ~l/3~o 
and consider the sets .f i~(x),  x ~ Fj:, If a given Fj is to furnish a "good"  
approximation to Fo~, then the sets f i~(x)  should be approximately point- 
like, i.e., they should be "small" subsets of /3oo. Of course, we cannot 
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determine smallness in an absolute sense except with respect to some metric, 
but we can meaningfully require that the tiling of F00 given by the f ;s  
become arbitrarily fine as j ~ oo. Let us agree to judge this in terms of  the 
following criterion. 

Criterion. Let ~j  be an indexed family of  subsets of  a compact  space 
Z, with indices directed by the partial ordering - .  We will say that qbj 
becomes arbitrarily fine in Z iff for each covering 7/" of  Z by a finite number  
of  open sets V~, there exists k such that each family qb s wi th j  >- k is "~ 
in the sense that each ~b ~ ~s is contained in some V~ E ~ 

After this lengthy preamble,  and under  the assumptions set out above, 
we can state the following theorem. 

Theorem 2. The family r s - { f f ~ ( x ) i x  ~ Fs} becomes arbitrarily fine 
in/300. 

Proof. Let { V~ I ot = 1 , . . . ,  n} be a fixed open cover of/300, which we 
will identify with S, in order to avoid proliferation of notation. By the 
condition of Lemma 4.2 we can find for each a and each x E V~ an index 
j and a U ~ q/j such that x ~ U c V~. The totality of  sets U found in this 
way cover S (obviously), whence (since S is compact)  some finite selection 

= { U ~ , . . . ,  UN} of them suffices to cover S. Now let Us s ~ and find a 
k which is simultaneously greater than J l , . . . ,  jN (which is possible because 
j is a directed index). Then by the definition of -<, U~ s ~(q/k) for i =  
1 . . . .  , N, or in other words, ~ c ~(~ ' and afortiori qg c ~(0//j) for any 
j ----- k. But if cr c ~(q/s), then the equivalence classes of  S defined by q/s are 
smaller than those defined by ~;  that is, each setff~(x) for x s Fj is included 
in some Ui ~ (r Since in addition each U~ s cr is contained in one of the 
sets V~, we conclude that: Vj >- k, Vx ~ Fj, 3a, f f l ( x )  c V~. This completes 
the proof,  since our identification of S with Fo~ means that fj and fj~ have 
also been identified. �9 

5. FURTHER C O M M E N T S  

In the preceding sections, we have encountered several suggestions 
that the finite topological space (or poset) possesses a structure suitable for 
approximating bounded portions of physically important manifolds. In 
particular, we have studied the way in which an inverse system YF of  such 
spaces can converge to a compact  space S. We may think of such a pair 
S, YF as having arisen in more than one way. On one hand we might have 
begun with S, and then derived YF by introducing into S a system of  covers 
of  ever increasing fineness. On the other hand, S might have been constructed 
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directly as the (or as a subspace of  the) limit of  a preexisting system YC of  
finite spaces and maps. The former way would be more appropriate if we 
were faced with a known space S which we wanted to "finitize" for 
computational or other purposes. The latter would be more appropriate if 
we needed to actually "create" S by means of  Y(, either because some of  
the spaces Fk really exist on a small scale, or because we are trying to 
capture mathematically a concept like that of  "a manifold with topological 
features of  arbitrarily small scale". In either case we have seen that the 
mathematical situation is largely satisfactory: the system if{ converges to $, 
and the convergence is such that the elements of  successive spaces Fj 
correspond to smaller and smaller subsets of  S. There are also systems of 
"finitary" topological spaces converging to locally-compact spaces, or to 
more general spaces obeying suitable regularity conditions. The only draw- 
back of  the whole scheme is that the most naturally definable limit Fo~ 
contains, in addition to $, points which in general need to be eliminated 
by means of  one or another less than e legan tpbu t  nonetheless well- 
defined--condit ion.  We have seen also that the study of  finite topological 
spaces brings about a confluence of  topological, combinatoric, and order- 
theoretic ideas that one could only expect t o b e  fruitful. 

There is, however, another combinatorial structure that is often used 
to approximate physical continua such as spacetime, namely the simplicial 
complex. It is again true that any compact space can be realized as an 
inverse limit of  simplicial complexes and simplicial maps (Eilenberg and 
Steenrod, 1952), but the realization in question has two shortcomings. First, 
the successive complexes do not "become fine" with respect to the limit 
space S. Second, there seems to be no way to derive a system of  simplicial 
complexes from a system of open coverings of  S. For although there is a 
complex associated to any given cover (namely its nerve), there is no unique 
simplicial map associated to a pair of covers one of which refines the other: 
we get analogs of the Fj, but not of the ~k. It is not clear how severe either 
shortcoming is (for example, the first might be remedied by allowing a more 
general class of  maps than just simplicial ones), but they do suggest that 
the finite topological space/poset  offers a more thoroughly combinatorial 
approximation tool than the simplicial complex, as well (paradoxically?) 
as one with a more "operat ional"  flavor. 

In any case, there is actually a very close relationship between simplicial 
complexes and posets, as was alluded to in Section 3. Indeed, the latter 
can be construed as a special case of the former (and vice versa to some 
extent), via the existence of  a functor (called E in Section 3) taking finite 
topological spaces to simplicial complexes and continuous maps to sim- 
plicial maps. [Conversely, it is easy to pass from a complex A to a poset, 
by introducing a convenient open cover o?/ on A and forming F ( ~ ) . ]  For 
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this reason posets can be useful simply as an aid in dealing with simplicial 
complexes. 12 

Of course the most interesting question is whether posets have any role 
to play in fundamental  physics. My belief is that they do, but that the order 
they express has more of  a causal significance than a (directly) topological 
one: that the finitary structure underlying spacetime is that of a "causal  
set" (Bombelli  et al,, 1987; Sorkin, 1990). Even in this case, however, it 
may be useful to associate certain finitary topological spaces F with a given 
causal set C. I f  C can be approximated by a globally hyperbolic spacetime 
manifold M, it is obviously important  to understand how the topology of 
M relates to the structure of  C. One way to do so may be to consider within 
C subsets F which correspond to "thickened" Cauchy hypersurfaces in M. 
Such an F is by definition still a poset, and it seems plausible that, regarded 
as a topological space, F carries considerable information on the topology 
of  the hypersurface in question. 
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